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Abstract

Mortgage default rates, on the one hand, serves as a measure of economic health to
support decision-making by insurance companies, and on the other hand, is a key risk
factor in the asset-liability management (ALM) practice, as mortgage-related assets
constitute a significant portion of insurers’ investment portfolios. This paper studies
the relationship between economic losses due to natural hazards and mortgage default
rates. The topic is greatly relevant to the insurance industry, as excessive insurance
losses from natural hazards can lead to a surge in mortgage defaults, creating com-
pounded challenges for insurers. To this end, we apply a state-space modeling (SSM)
approach to decouple the effect of natural hazard losses on mortgage default rates,
after controlling for other economic determinants through the inclusion of latent vari-
ables. Moreover, we consider a sliced variant of the classical SSM to capture the subtle
relationship that only emerges when natural hazard losses are sufficiently high. Our
model verifies the significance of this relationship and provides insights into how natural
hazard losses manifest as increased mortgage default rates.

Keywords: Bayesian inference; Latent factors; Loss modeling; Sliced method; Dependence

1 Introduction

The mortgage default rate refers to the percentage of mortgage loans that are delinquent,
typically defined as past due by a specified period. In this paper, we define a 90-day
delinquency as default. This is consistent with the classification by the US Consumer
Financial Protection Bureau, which categorizes such cases as serious delinquencies reflecting
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severe economic distress among borrowers. In general, studying mortgage default rates
can provide useful insights into the overall health of the economy, which in turn can help
insurance companies understand and anticipate policyholder behaviors, including demand
for new policies and lapse tendencies.

Beyond serving as a measure of economic health, modeling and understanding the de-
terminants of mortgage default rates is important to the insurance industry for several
more direct and practical reasons. Mortgage-backed securities (MBS) constitute a signifi-
cant portion of insurance companies’ investment portfolios. According to a recent report
published by the NAIC Capital Markets Bureau, as of year-end 2023, mortgage-related
investments accounted for approximately 9% of the investment assets held by insurance
companies (Wong, 2023). These assets represent the third-largest portion of insurers’ in-
vestments, following bonds (60.8%) and common stocks (13.9%). The inclusion of MBS
in investment portfolios inherently links mortgage defaults to insurance companies’ asset-
liability management (ALM) practices. Adverse changes in mortgage default rates can
disrupt the predicted cash flows from mortgage-related assets, thus triggering mismatches
between an insurer’s asset inflows and liability outflows. Increases in mortgage default
rates can also cause valuation declines in MBS, increased duration risk, and challenges in
maintaining liquidity and regulatory capital adequacy.

In addition, changes in borrower default behavior on loans are a key risk factor in-
fluencing the management of mortgage insurance business, which represent an important
segment of the insurance industry.

Modeling the mortgage default rates is becoming more important yet challenging in
the wake of global climate change. The rising frequency of extreme weather events has
significantly undermined the financial stability of borrowers residing in areas prone to
natural hazards, particularly those from underserved and financially vulnerable communi-
ties. Several instances have suggested that natural hazards can trigger abnormal volume
of mortgagee defaults, potentially caused by destruction of properties and disruption to
a family’s regular income flow. For instance, it was found that loans on moderately to
severely damaged homes in areas affected by Hurricane Harvey were more likely to become
90-day delinquent compared to loans on homes with no damage (Kousky et al., 2020).
In the aftermath of Hurricanes Irma and Maria, the home mortgage delinquency rates
were tripled in the Houston and Cape Coral metro areas.1 The Tubbs wildfire caused the
delinquency rates to spike by 50% in the Santa Rosa area.2

We acknowledge the extensive body of economic literature devoted to modeling mort-
gage defaults (see Leece, 2008, for a comprehensive textbook treatment). One strand of the
literature focuses on modeling default risk at the individual loan level using classification
methods or survival analysis techniques (see Fitzpatrick and Mues, 2016, for a compre-
hensive review and additional references therein). Another stream of literature emphasizes

1Source: https://realtynewsreport.com/mortgage-delinquencies-tripled-after-hurricane-ha

rvey-foreclosure-threats-follow-all-major-storms-corelogic-study-shows/
2Source: https://www.corelogic.com/intelligence/wildfires-and-housing-markets/
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aggregate-level modeling, where regression methods are applied to analyze the percentage
of defaults relative to the total number of loans within a given portfolio (e.g., Coleman
et al., 2005; Sadhwani et al., 2021). A third area of research aims to apply economic the-
ories to identify the socio-economic determinants of mortgage defaults (e.g., Elul et al.,
2010; Foote et al., 2008; Foster and Van Order, 1984).

To the best of our knowledge, no prior statistical study has been devoted for modeling
and understanding the subtle relationship between natural hazard losses and mortgage
default rates. This gap is particularly relevant to actuarial considerations, as the co-
occurrence of excessive insurance claims due to natural hazards and the accompanying
surge in mortgage defaults can create compounded challenges for insurance companies’
ALM practices, simultaneously disrupting both the asset and liability sides of their balance
sheets. In this paper, we aim to close the gap. The model developed in this paper, on the
one hand, can help verify the significance of this relationship and provides insights into how
natural hazard losses translate into increased mortgage default rates. On the other hand,
it lays the groundwork for promoting more sophisticated predictive analytics of mortgage
default rates in future research.

In light of the discussion above, the goal of this paper is to develop a statistical frame-
work capable of capturing the dependence between natural hazard losses and mortgage
default rates. Specifically, we aim to integrate the monthly natural hazard losses extracted
from the Spatial Hazard Events and Losses (SHELDUS) database into the evolution mod-
els of default rates, calculated based on the Fannie Mae Single-Family Loan Performance
(SFLP) data. The details of these two datasets will be provided in Section 2. Exploratory
analysis of the data suggests that large natural hazard losses may trigger a spike in default
rates, but the impact diminishes when the losses are not sufficiently high.

When formulating a model for the observed time series of default rates and linking it
to natural hazard losses, an important consideration is ensuring its interpretability, which
enables us to leverage the model estimates to infer whether and how natural hazards
influence borrower default behaviors on mortgage loans. To address the need for both
modeling flexibility and interpretability, we resort to the notion of state space modeling
(SSM; Durbin and Koopman, 2012), which have found fruitful applications in a great
variety of fields, including actuarial science (e.g., De Jong and Zehnwirth, 1983; Neves
et al., 2016; Chukhrova and Johannssen, 2017; Fung et al., 2017; Youn Ahn et al., 2023; Li
and Su, 2024).

SSM provides a unified framework for analyzing how a system evolves over time. A key
underlying assumption is that the dynamics of the observed time series, often referred to as
space variables, are governed by unobserved state variables. Many popular structural time
series models, such as ARMA and ARIMA, can be viewed as special cases of SSM. For our
application, we model the observed default rates as our space variable. The time dynamics
of these rates are driven by unobserved state variables, which can be broadly interpreted
as a summary of the state of the economic system. The effects of natural hazard losses
are then assumed to contribute additively through a covariate effect to the (transformed)
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default rates. This allows us to decouple the effect of the natural hazard losses on default
rates from other macroeconomic factors such as interest rates, unemployment rates, housing
market conditions, etc., which are summarized in the latent state variables.

We note that Aktekin et al. (2013) also applied SSM to model mortgage default risks.
However, their model’s objective was the number of defaults within a given mortgage
pool, rather than the default rates, and they did not account for the impact of natural
hazard losses. Moreover, in this paper, we deviate from the classical SSM by postulating
that natural hazard events with varying levels of losses may have differential impacts on
default rates. This is incorporated in the model by considering separate coefficient vectors
when losses exceed the threshold and when they do not. To estimate the model, we take
the Bayesian route, as it provides automatic quantification of uncertainty in parameter
estimates, which enables us to draw statistical inference on the hypothesized relationship
between natural hazard losses and mortgage default rates.

The rest of the article is organized as follows. In Section 2, we introduce the Fannie Mae
SFLP and the SHELDUS datasets. In doing so, we establish plausible relationships between
natural hazard losses and mortgage default rates that inform our modeling decisions, in
particular the choice of a sliced structure and the selection of relevant months’ losses. Next,
in Section 3, we provide an overview of SSM’s and introduce the modified sliced variant
proposed in this article. A simulation study is included to elucidate how the rarity of
natural hazard losses affects regression parameter estimation and provide intuition for the
proposed sliced model at hand. In Section 4, we demonstrate the fitting of the proposed
model to the SFLP and SHELDUS datasets and evaluate its performance using a rolling
one-month-ahead prediction procedure, which imitates a real-time use of the proposed
model. Section 5 concludes this paper.

2 Data

2.1 Fannie Mae Single-Family Loan Performance Dataset

The response variable in our study is the mortgage default rate which we source from the
Fannie Mae SFLP data. This dataset contains monthly performance data for a subset of,
“30-year and less, fully amortizing, full documentation, single-family, conventional fixed-
rate mortgages” acquired by Fannie Mae since Jan. 1, 2000. We downloaded the data as a
ZIP archive containing 96 quarterly data files comprising Q1 2000 until Q4 2023 through
Fannie Mae’s Data Dynamics® portal. We extracted the fields described in Table 1, where
the definitions of the variables are provided.

From this data, we can calculate the number of loans in month t that are either current
(i.e., up to date on outstanding payments) or are fewer than k-months delinquent as
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Symbol Field Name Description

ID Loan Identifier A unique identifier for the mortgage
loan

MONTH Monthly Reporting Period The month and year of the loan status
information

STATE Property State A two-letter abbreviation indicating
the state or territory within which the
property securing the mortgage loan is
located

STATUS Current Loan Delinquency Status The number of months delinquent as of
the reported month

Table 1: Summary of the data fields from the SFLP dataset used in the analysis.

Ck,t =

J∑
j=1

1[0,k)(STATUS) ∗ 1{t}(MONTH) (1)

where each j is one month of data on one loan and J = 2, 938, 721, 940 is the total number
of loan-months in the dataset. Therefore, the percentage of loans that are newly k months
delinquent can be computed as

rk,t =
Ck+1,t − Ck,t

Ck+1,t
. (2)

By definition, Ck+1,t ≥ Ck,t. The denominator in rk,t represents the number of loans that
are k or fewer months delinquent. If a loan was previously k months delinquent and the
borrower is now up to date on their payments, then the loan will re-enter the denominator.
The numerator excludes loans that are below the (k− 1)-th month delinquency status and
beyond the (k+ 1)-th month delinquency status, while only keeps the loans newly entering
into the k-months delinquency. Throughout the rest of this paper, we would consider k = 3
since we treat 90-day delinquencies as mortgage defaults.

In order to calculate Ck,t for a specific STATE, we add another indicator function to
(1) and denote this change by adding a superscript to Ck,t. Namely, for STATE = i, we
write Cik,t where i ∈ {AL, . . . ,WY} — the abbreviations of the variable STATE arranged in

alphabetical order. This new state-specific Cik,t is therefore

Cik,t =
J∑
j=1

1[0,k)(STATUS) ∗ 1{t}(MONTH) ∗ 1{i}(STATE). (3)

Additionally, rit,k uses the same definition as in (2) with Ck,t and Ck+1,t replaced by Cik,t
and Cik+1,t, respectively.
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Figure 1: On the left, monthly natural hazard losses in dollars, Xi
t , within the SHELDUS

dataset (top) and monthly default rates, ri3,t, in the Fannie Mae SFLP dataset for Texas. On
the right, monthly natural hazard losses at the state level across all states are approximately
distributed log-normal with mean 12.927 and variance 7.755.

As an illustration, the left, bottom half of Figure 1 shows the proportion of loans
entering 90-day delinquency status, ri3,t, for the state of Texas during the time span of our
dataset. Increases in mortgage default rates are clearly observed during the 2008 financial
crisis. This lends itself naturally toward a SSM approach, where the involved latent factors
can help capture the effects of the changing economic system, allowing us to isolate and
analyze the relationship between natural hazard losses and mortgage default rates, which
is the focus of this paper.

Next, we will explore whether the losses from natural hazards, such as major hurricanes,
may have potential explanation capacity on the observed mortgage default rates that extend
beyond the latent macroeconomic effects. Throughout this paper, we will refer to ri3,t, our

response variable, as yit.

2.2 Spatial Hazard Events and Losses Dataset

The SHELDUS dataset managed by the Center for Emergency Management and Homeland
Security at Arizona State University 3, enumerates losses due to natural hazards in the US
at the county-level. The SHELDUS data includes various forms of direct losses, location,
type of natural hazard, and the date of each natural hazard. The losses are inflation-
adjusted. To retrieve monthly aggregate damage in each state, we sum the PropertyDmg

field grouping by Month, Year, and State. The monthly damages in Texas are shown in
the left, top half of Figure 1. We index the months and years in a single variable t, with
1 ≤ t ≤ T and t ∈ N, and we denote the aggregate loss at time t in state i by Xi

t . As shown
on the right side of Figure 1, the state-level monthly losses are approximately distributed
log-normal with location parameter µx = 12.927 and dispersion parameter σ2x = 7.755.
Moreover, the correlation between losses in subsequent months is 0.023, indicating that
these monthly losses can be treated as uncorrelated (at least linearly).

3available at https://cemhs.asu.edu/sheldus
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To model the relationship between mortgage default rate yit and natural hazard losses,
we introduce a notation to represent the losses in months t−m to t−n, inclusive, for state
i. Because at time t, the losses for month t are not yet known, we can only model using
the natural hazard losses up to time t− 1, thus n ≥ 1. We denote

Xi
t,m:n =

[
Xi
t−m Xi

t−m+1 . . . Xi
t−n−1 Xi

t−n
]> ∈ Rm−n+1. (4)

As one of the objectives in our modeling, we are interested in knowing which previous
month(s) have the most significant impact on the new 3-month delinquency. For instance,
it could be that losses from natural hazards take time to manifest as increased mortgage
delinquency, in which case the most impactful months of losses for default rates at time t
would be before month t− 3, such as t− 4 or t− 5. Alternatively, if effects are immediate,
then we would expect month t− 3 to have the largest impact.

The scatter plots and correlation plot in Figure 2 reveal some preliminary insights into
the subtle relationship between monthly natural hazard losses and mortgage default rates.
Specifically, the scatter plot in the left panel of Figure 2 shows no clear dependence pattern
between the monthly natural hazard losses and mortgage default rates. However, as we
shift our focus to months with natural hazard losses exceeding $500 million, as shown in the
middle panel, a strong positive dependence pattern emerges. The tail dependence between
natural hazard losses and mortgage default rates is further apparent in the right panel
of Figure 2, which summarizes their lagged correlations at different loss truncation levels.
Collectively, Figure 2 illustrates that small natural hazard losses appear to have minimal
impact on mortgage default rates, while large losses tend to trigger significant increases
in default behaviors. This aligns with intuition, as only severe natural hazard events
are likely to cause widespread financial hardship within affected communities, thereby
impairing individuals’ ability to repay their mortgages. The discussion above suggests
that, to uncover the effect of large losses on mortgage default rates, the Xi

t,m:n values
should be segmented based on a threshold informed by the data.

As for the most influential months, based on the lagged correlations presented in the
right panel of Figure 2, we hypothesize them to be months t− 3, t− 4 and t− 5. Within
our modeling framework, we allow the effects of some of these months to be exactly zero,
and let the data guide the estimation procedure to uncover any supporting evidence.

3 State Space Modeling

3.1 Overview of Classical State Space Modeling

SSM is a hierarchical data modeling framework consisting of a set of latent stochastic
processes that collectively govern an observed variable. In this paper, we are interested
in a class of SSM’s that integrate covariate information through a linear model in the
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Figure 2: Left panel: The scatter plot between monthly natural hazard losses and the
percentage of loans newly entering into 3-month delinquency. Middle panel: The scatter
plot between monthly natural hazard losses in log scale (base 10) and the percentage
of loans newly entering into 3-month delinquency for months with natural hazard losses
greater than $500 million. Right panel: The correlations between mortgage default rates
and natural hazard losses truncated at varying levels, with different lag months.

observation space and incorporate a local linear trend structure in the state space. That is

yt = X>t β + µt + εt, εt ∼ N
(
0, σ2y

)
αt =

(
µt
νt

)
= Aαt−1 + ηt, ηt ∼ N2(0, Q), A =

(
1 1
0 1

)
,

(5)

whereQ = diag(σ2µ, σ
2
ν), and t = 1, . . . , T . We also assume α0 = 0. When σ2ν = 0, the model

collapses to a deterministic trend model. Borrowing the notation from the previous section,
yt is a function of the 3-month delinquency rates, f(yit), from the Fannie Mae SFLP dataset
and Xt is a function of the losses, g(Xi

t,m:n), from the SHELDUS dataset. The functions
f and g correspond to appropriate data transformations, which will be specified in Section
4.1. The state components, αt = (µt νt)

>, reflect a linear trend with a random walk
slope, νt, that accumulates with local Gaussian perturbations into µt. These components
are designed to capture the fluctuations arising from other macroeconomic factors, enabling
us to isolate the effects of natural hazard loss covariates on mortgage default rates.

Concerning the interpretability of the regression parameters, the observation space,
yt|µt, is independent of the latent state at time t − 1, µt−1, meaning that β directly
describes the linear relationship between Xt and yt − µt.

Let θ = (β, σ2y , σ
2
µ, σ

2
ν) denote the vector of parameters associated with the SSM speci-

fied in Equation (5). While a classical frequentist approach can be adopted to estimate θ,
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we take the Bayesian route due to its natural ability to quantify uncertainty, thereby facil-
itating inference on the significance of the covariate effects. To this end, we endow θ with
a prior distribution. Specifically, we use a product prior: π(θ) ∝ π(β)π(σ2y)π(σ2µ)π(σ2ν).

Then by Bayes theorem, the posterior distribution of θ | (yt, Xt)
T
t=1 is given by

π(θ | (yt, Xt)
T
t=1) ∝ p(y1, . . . , yT | X1, . . . , XT , θ)π(θ).

Markov Chain Monte Carlo sampling can be used to sample from this posterior to
compute posterior summaries of parameters. However, a key barrier in fitting the model
(5) lies in handling the latent components αt = (µt νt)

>. Note that the likelihood of the
observed data is given by

p(y1, . . . , yT | X1, . . . , XT , θ) =

∫ [ T∏
t=1

p(yt | αt, θ)

]
p(αt)dαt.

Hence, in order to sample from this posterior distribution, one needs to deal with the
high-dimensional integral involved in the observed likelihood. This issue can be addressed
by what is known as the data-augmentation trick (Hobert, 2011). The idea is to augment
the target posterior distribution by incorporating the conditional distribution of the latent
states given the observed data:

π(θ, (αt)
T
t=1 | (yt, Xt)

T
t=1) ∝

[
T∏
t=1

p(yt | αt, θ)

]
p(αt)π(θ).

A standard Gibbs sampler would then be applied to sample θ | (αt, yt, Xt)
T
t=1 and αt |

θ, (yt, Xt)
T
t=1. The advantage of adopting the augmentation approach is that, conditional

on the latent variables (µt, αt), the model in (5) simplifies to a basic linear regression
model. Moreover, the approach allows prior specification for θ | αt to be straightforward
and intuitive. For example, in our work, we use a spike and slab prior (George and
McCulloch, 1993) on the regression coefficients β, namely,

βj | (αt)Tt=1
i.i.d∼ ρN(0, τ2) + (1− ρ)δ0,

where δ0 is a point mass at 0. The implication of this prior choice is that with probability
ρ, the variable βj | (αt)

T
t=1 ∼ N(0, τ2) and with probability (1 − ρ), it is set to 0. The

advantage of using this class of priors over other common continuous priors, such as a
normal distribution, is that the posterior probability of βj = 0 is positive, which allows for
direct inference about significant or negligible covariate effects. The parameter ρ encodes
our prior belief on the probability that a particular regression component will be included
in the model. We set ρ = 0.5 in our analysis.

For the variance parameters σ2y , σ
2
µ, σ

2
ν , we assume conditionally conjugate priors, i.e.,

σ2y | (αt)
T
t=1 ∼ Inverse-Gamma(a, b) with a > 0, b > 0. In our analysis, we set both a
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and b to small positive numbers, which is a common choice of non-informative hyperpa-
rameters. For the sake of completeness, we remind the reader that a random variable
Z is said to follow an inverse gamma distribution with parameters a, b > 0, denoted by
Z ∼ Inverse-Gamma(a, b), if its density f(z) ∝ z−a−1e−b/z for z > 0.

Although spike and slab priors are suitable for variable selection and interpretation, they
do not render easy posterior sampling. This problem is typically addressed by introducing
another set of latent variables γ = (γ1, . . . , γp) such that βj | γj = 1, (αt)

T
t=1 ∼ N(0, τ2)

and βj | γj = 0, (αt)
T
t=1 ∼ δ0. Clearly, γj

i.i.d∼ Bernoulli(ρ), and marginalizing over γj yields
the desired prior distribution. Moreover, given γ, the model (5) can be expressed as

yt = X>t,γβγ + µt + εt

αt = Aαt−1 + ηt,

where Xt,γ is a |γ| × 1 vector with columns equal to Xt if and only if the corresponding
γj = 1; βγ is similarly defined. Let φ | − denote the conditional distribution of any generic
parameter φ given all other parameters and the observed data. Then, given γ and (αt)

T
t=1,

we have the following full conditional distributions:

βγ | − ∼ N(ΩγX
>
γ (y − µ),Ωγ), Ωγ = (X>γ Xγ + τ2I|γ|)

−1;

σ2y | − ∼ Inverse-Gamma

(
T

2
+ a,

1

2

T∑
t=1

(yt − µt −X>t,γβ)2

)
;

σ2µ | − ∼ Inverse-Gamma

(
T

2
+ a,

1

2

T∑
t=1

(µt − µt−1 − αt)2
)

;

σ2ν | − ∼ Inverse-Gamma

(
T

2
+ a,

1

2

T∑
t=1

(αt − αt−1)2
)
.

The above steps are complemented by the update of the latent indicators γ using Bayes
theorem:

p(γj = 1 | γ−j ,−) ∝ p(y1, . . . , yT | (αt)Tt=1, Xγ−j )ρ,

where γ−j is a vector obtained by deleting the j-th element of γ. Essentially, the first term
in the right-hand side of the above expression computes the likelihood of the observed data
given that the j-th variable is included in the model. This is then multiplied by the prior
probability that γj = 1 which is ρ. Throughout the remainder of this paper, we shall
denote this basic model as SSM.

Next, we come to the sampling of αt | θ, (yt, Xt)
T
t=1. This is done by combining se-

quential Monte Carlo (Doucet et al., 2001) and Kalman filtering. We briefly describe the
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basics. Suppose we are given π(α1:t | y1:t). Then

π(α1:(t+1) | y1:(t+1)) =
π(y1:(t+1) | α1:(t+1))π(α1:(t+1))

π(y1:(t+1))

=
π(y1:t | α1:t)π(yt+1 | αt+1)π(αt+1 | αt)π(α1:t)

π(y1:t)π(yt+1 | y1:t)

=
π(α1:t | y1:t)π(αt+1 | αt)π(yt+1 | αt+1)

π(yt+1 | y1:t)
,

where the reduction in the conditioned event holds due to the Markov nature of the model.
We note here that conditioning on θ is implicit. In the above expression, the distributions
π(αt+1 | αt) and π(yt+1 | αt+1) are completely known. A key thing to note here is that the
denominator is independent of α1:(t+1). The required expressions are then computed using
the Kalman filter (Durbin and Koopman, 2012).

3.2 The Modified Sliced State Space Modeling

The preliminary analysis presented in the right panel of Figure 2 indicates that the sig-
nificance of the impact of natural hazard losses on mortgage default rates depends on the
magnitude of the losses. The direction of dependence is also quite evident in that natural
hazard losses below a certain threshold have minimal impact on default rates, whereas
higher losses exert a significantly stronger influence. The classical SSM specified in (5)
does not account for such varying effects of the covariates. We now propose a modified
sliced SSM which incorporates additional flexibility that allows us to capture the subtle
relationship between natural hazard losses and mortgage default rates, which emerges only
in the extreme scenarios. Then we argue that the proposed modified model can be can be
reformulated into a structure consistent with the one in (5), and thus similar estimation
procedure can be used to implement the proposed modified model.

Consider the following model:

yt = (X l
t)
>βl + (Xu

t )>βu + µt + εt

αt = Aαt−1 + ηt, (6)

where Xu
t are the values of Xt that exceed the threshold with zeros elsewhere, X l

t are
the values of Xt at or below the threshold with zeros elsewhere, c is the threshold, and
αt is defined as in (5). The parameter βl in (6) captures the effect of natural hazard
losses on mortgage default rates that do not exceed the threshold c. On the other hand,
βu is the effect when the losses exceed the threshold c. From our preliminary analysis,
we expect βl to be small, which means when losses are small, mortgage default rates
are mostly governed by the economic attributes captured by the latent components αt =
(µt νt)

>. The introduction of separate coefficients for the two cases does not mean that
we consider two separate processes of default rates since these are connected by the same
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underlying latent state αt. The model is a special case of a varying coefficients model,
where one assumes yt = X>t βt + µt + εt, and models βt as a function of t. In our case,
βt has two distinct values βl, βu. Compared with the more general approach with varying
coefficients, the proposed sliced SSM offers the advantages of easier implementation and
more straightforward interpretation.

Bayesian inference on this modified model can be recast to the posterior sampling
procedure described in Section 3.1. Specifically, define a new covariate vector X̃t =
(XtIXt≥c, XtIXt<c), and let β̃ = (βl, βu). Then, the modified model (6) can be refor-
mulated as

yt = X̃tβ̃ + µt + εt

αt = Aαt−1 + ηt,

which is consistent with the structure considered in (5). The prior choices for other pa-
rameters remain the same as discussed in the previous subsection. Moreover, we assign

β̃j | (αt)
T
t=1

i.i.d∼ ρN(0, τ2) + (1 − ρ)δ0. Throughout the rest of this paper, we shall denote
this modified model as mSSM.

3.3 A Simulation Study

To elucidate the behavior of modified sliced SSM defined in Equation (6) as well as its
effectiveness for capturing the tail dependence in disaster losses and mortgage default
rates, we simulated the process with βu = 10, βl = −0.5, α0 = (−6 0)>, σ2y = 0.25,

σ2µ = 10−2, σ2ν = 10−4, and logXt
i.i.d∼ N(0, 1). Figure 3 shows a realization of this process,

where we can see spikes in logXt correspond to spikes in yt. We present the values of
logistic(yt) and logistic(µt) in the top chart of Figure 3, which transforms the observation
state to a rate on the interval (0, 1), similarly to our observed mortgage default rate data.
Furthermore, the values of yt approximately center around the state space value, with short-
term perturbations due to logXt. Over time, yt may increase or decrease substantially due
to µt, suggesting that controlling for state-space variation is important for isolating the
effects of logXt on yt.

Next, we explore the impact of a rolling window covariate structure, with the covariate
data split at a threshold c using a local level model. Based on Figure 2, the linear rela-
tionship between logXt,m:n and log yt becomes stronger as the cutoff of losses increases,
with a maximum correlation when considering only losses greater than $500 million. We
define two vectors logXtIlogXt≥c and logXtIlogXt<c with corresponding regression param-
eters βu and βl for the upper and lower covariate values. The key takeaway from modeling
in this manner is that if there have been no events with catastrophic level losses, then the
fitting procedure will not be able to learn β. However, if there is even just one event, these
estimates become stable, as shown in Figure 4.
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Figure 3: A simulation of the local linear trend model with βu = 10, βl = −0.5, α0 =

(−6 0)>, σ2y = 0.25, σ2µ = 10−2, σ2ν = 10−4, and logXt
i.i.d∼ N(0, 1).

4 Real Data Analysis

In order to implement the model in (6) on the Fannie Mae SFLP and SHELDUS datasets,
there are several issues we need to consider, including selecting appropriate data transfor-
mations, determining the number of months of covariates to include, and deciding whether
to bifurcate the natural hazard losses at a dollar amount threshold for the regression anal-
ysis. These considerations are addressed in the succeeding subsections.

4.1 Data Transformations

We begin our analysis by considering a reasonable transformation for the explanatory
variable, Xt. We aim to find a function g(x) : R→ R such that the empirical distribution
of g(x) has few outliers. As shown in Figure 1, the distribution of natural hazard losses is
approximately log-normal. This bodes well for estimation of regression parameters, because
under a log transform, it is unlikely that we will experience extreme values of the covariates
that could skew the estimate of β. To further improve the interpretation of the regression
coefficients, we scale the covariates via

g(x) =
log x− µx

σx
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Figure 4: Prediction of the response variable and estimation of covariate effects based on
simulated data from a sliced SSM (6), with βu = 10, βl = −0.5.

where µx = 12.927 and σx =
√

7.755 as demonstrated in Figure 1.
Similarly, for the response variable, yt, we need to identify an invertible function h :

[0, 1]→ R that ensures the residuals from fitting (6) are approximately normal distributed.
Two natural options are the logistic and probit transformations given as

logit(y) = log
y

1− y
and probit(y) = Φ−1(y)

where Φ−1(y) is the inverse standard Gaussian CDF. Both of these transformations produce
reasonably similar results when applied to our dataset, as shown in Figure 5. Because the
logit is a mathematically simpler transformation, we will default to its use throughout this
analysis.

4.2 Variable Selection and Slicing

In our model, we have to decide which months of losses to include as covariates at time t.
Our analysis in Figure 2 indicates that for 3 month delinquency rates, the losses in month
t − 3 have the highest correlation with the delinquency rate. The high correlation for
month 3 holds across various loss levels, ranging from all losses to only losses greater than
$1 billion. Furthermore, because losses in months t− 1 and t− 2 occurred less than three
months prior to the observed 3-month delinquency rates, they are intentionally excluded
from our model.

The left panel of Figure 2 also demonstrates that at low levels of losses from natural
hazard, there appears to be no linear relationship between the losses and mortgage default
rates. This comes as no surprise, as less severe natural hazard events are less likely to
impose significant financial hardships on borrowers, or may not result in a sufficient number
of severely damaged properties to cause a noticeable shift in default rates across a large
geographic area, such as a state. However, once losses become significant, as shown in
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Figure 5: Change in the shape of the distribution for 90-day mortgage delinquency rates
in Texas resulting from logit and probit transformations.

the middle plot of Figure 2, a clear relationship emerges between natural hazard losses
and default rates. To incorporate knowledge of this multifaceted relationship between the
covariates and our response, we split the covariates into two datasets, one where losses
exceed $10 billion, and another where losses are under $10 billion.

4.3 MCMC mixing

Latent variable models are prone to poor mixing of MCMC chains. Inferences drawn from
poorly mixed chains can lead to erroneous conclusions. Hence, it is important to ensure
that the MCMC chains have mixed reasonably before going into further analysis. Here, we
first take a look at some descriptive quantities and visual evidences to ensure the chains
have mixed. We first consider the SSM and mSSM model for the State of Texas. We
ran the chain for N = 5000 iterations with 2000 burn-in iterations. In Figures 6 and 7, we
show the traceplots of (β1, σ

2
y , logL) and (βu1 , σ

2
y , logL) for SSM and mSSM, respectively.

Here, logL is the observed log-likelihood. The chains seem to mix reasonably well; the log-
likelihood of the observed data hovers around a central value. Another thing is apparent
from these plots: for the SSM model, where no distinction is made between very large
and small natural hazard losses, the estimate of β1 is very close to 0, in fact in almost half
of the iterations it is set to 0. This matches with our intuition from Figure 2 where there
is no apparent (linear) relationship between natural hazard losses and default rates. For
the mSSM model however, we see that natural hazard events with catastrophic losses do
impact the mortgage default rates.

We also compute the effective sample size for each parameter. The effective sample size
is roughly an estimate of how many “independent” samples were generated out of the N
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Figure 6: MCMC traceplots of β1, σ
2
y , and logL where L is the likelihood of the observed

data for the SSM model based on the Texas dataset.

samples. For a generic parameter θ, it is computed using the expression

Neff =
N

1 + 2
∑∞

k=1 rk
,

where rk is the lag-k correlation of θ. In practice, k is set to some large number (30, in our
case). For the SSM model, the effective sample sizes for N = 5000 MCMC iterations for
parameters (β1, β2, β3, σ

2
y , σ

2
µ, σ

2
ν) are (131, 470, 173, 89, 80, 81), respectively. The relatively

low effective sample sizes might be due to the latent variable nature of the model. For the
mSSM model, the parameters are (βl, βu, σ2y , σ

2
µ, σ

2
ν). The corresponding numbers are of

the same order. We also computed results using different initializations, but generally
results (mixing and estimates) were not sensitive to the choice of the initial value.

4.4 Inference on latent states (µt, νt)

The posterior distribution of the latent variables indicate key differences between SSM and
mSSM, especially for states that have large natural hazard losses exceeding the chosen
threshold. As an example of such a state, we would again consider the state of Texas.
Three major hurricanes, namely Hurricane Rita (2005), Hurricane Ike (2008) and Hurricane
Harvey (2017) contributed to large natural hazard losses. These events were followed by
sharp spikes in delinquency rates; see left panel of Figure 1 for reference. Latent variables
capturing the general macroeconomic features during these times can not fully explain
these spikes. We will now see how this intuition is reflected in the actual results.

The MCMC sampler with N iterations provides us with N samples of the path (αt)
T
t=1

given the observed data. From this we create the posterior mean path, which is simply
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Figure 7: MCMC traceplots of β1, σ
2
y , and logL where L is the likelihood of the observed

data for the mSSM model based on the Texas dataset.

Figure 8: Posterior mean paths of the latent states (µt, νt) for Texas obtained from the
SSM model. Black line is the observed data and blue line is the posterior mean path of
µt.
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Figure 9: Posterior mean paths of the latent states (µt, νt) for Texas obtained fro the
mSSM model. Black line is the observed data and blue line is the posterior mean path of
µt.

the average over MCMC samples at each time point. Recall µt captures the state of the
general economic system at time t, and νt captures the local trend, if any, at time t. In
the left panels of Figure 8 and 9, we show the posterior mean path of µt. The right panel
of these figures show the path of νt. It can be readily seen from these figures that for
SSM, µt almost identically follows the observed default rates. This is due to the lack of
explanatory power of natural hazard losses as a whole on default rates. Moreover, the
path of νt fluctuates almost randomly about zero, indicating a lack of local linear trend.
Overall, most, if not all, of the variation in the observed default rates is explained by the
latent state µt. On the other hand, for the mSSM model, the situation is very different, in
that µt falls short of capturing the amplitude of the spike in default rates. The remaining
effect is then attributed to the catastrophic losses that happened just preceding the spikes.
Additionally, νt, while mostly hovering around the zero mark, increases sharply around
the spikes in default rates. In summary, one can come to the following conclusions: 1) the
general state-space model SSM is a powerful model to understand the dynamics of default
rates as governed by latent macroeconomic trends, and 2) if the objective is to study the
effect of catastrophic losses on default rates, adjustments in the model specification such
as (6) considered in this paper, are crucial to capture these effects.

4.5 Inference on βu and βl

We discuss the estimates of βu and βl in this subsection for states with history of catas-
trophic losses. Specifically, we consider Louisiana along with Texas. Like Texas, we have
default rate data for Louisiana from around 2005 until 2019. Hurricane Katrina in 2005
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Figure 10: Analysis of Louisiana mortgage default rates. From left to right: default rates
in logit scale, transformed natural hazard losses, histogram of posterior samples of βu1 ,
histogram of posterior samples of βu2 .

and Hurricane Harvey in 2017 made landfall in Louisiana inflicting devastating losses. We
consider the mSSM model. In Figure 10, we show the default rates and the natural haz-
ard losses for the state of Louisiana. As expected, there is a spike in default rates after
Hurricane Katrina. This is also reflected in the posterior histograms of βu1 and βu2 shown
in Figure 10, where we can see that large losses increase the default rates after removing
the effect of latent macroeconomic factors. Indeed, the distribution of both βu1 and βu2 are
almost entirely supported on the positive part of the real line. This is not the case with
βl. It is also important to note here that due to the prior structure on βu (spike and slab),
if a predictor is deemed to have no effect on the default rates, then it will be set to zero in
the posterior. We summarize these results for Texas and Louisiana in Tables 2 and 3 for
Texas and Louisiana, respectively. Here we define

ρ̂uj = P [βuj 6= 0 | y,X] =
1

L

L∑
l=1

I(βuj,l 6= 0), β̄uj =
1

L

L∑
l=1

βuj,l, sd(βuj ) =
1

L

L∑
l=1

(βuj,l − β̄uj )2.

In the above display, βuj,l is the l-th MCMC sample of βuj . We use the same definition and

notation for posterior summaries of βl. These quantities represent the posterior probability
that βuj is set to 0 (often called the posterior inclusion probability) and the posterior mean,
standard deviation, respectively. Additionally, we define CI(βuj ) to be the 95% credible
interval obtained from the MCMC samples.

As can be seen from the posterior inclusion probabilities of βu, the first and second
components, i.e. losses in months t− 3 and t− 4 are always included in the fitted model.
The posterior distribution of βu3 , which captures the effect of losses in month t − 5, is a
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mixture — it is non-zero with probability 0.58 for Texas and with probability 0.12 for
Louisiana. The posterior means and quantiles also support this conclusion in that the 95%
credible interval for βu1 and βu2 are clearly shifted away from zero, which is not the case for
βu3 . Overall, these results seem to support our hypothesis that very large natural hazard
losses induce a positive effect on mortgage default rates. Moreover, these same posterior
summaries for βl, reported in Table 3, show that the effects of natural hazard losses have
a pronounced effect on delinquency rates only when these exceed a certain threshold. For
example, none of the elements of βl are included in the model with probability more than
50%. Their estimates are also very close to zero. This is true for both Texas and Louisiana.

Texas Louisiana

βu1 βu2 βu3 βu1 βu2 βu3

ρ̂ 1 1 0.58 1 1 0.12

β̄ 0.09 0.17 0.02 0.23 0.52 0.006

sd(β) 0.03 0.02 0.02 0.03 0.03 0.01

CI(β) (0.05, 0.14) (0.13, 0.22) (0.00, 0.08) (0.17, 0.28) (0.46, 0.58) (0.00, 0.04)

Table 2: Posterior summaries of βu for Texas and Louisiana obtained from the mSSM
model.

Texas Louisiana

βl1 βl2 βl3 βl1 βl2 βl3

ρ̂ 0.07 0.11 0.32 0.03 0.22 0.05

β̄ 6× 10−5 9× 10−4 −5× 10−3 1× 10−4 3× 10−3 −3× 10−4

sd(β) 0.002 0.003 0.009 0.001 0.006 0.002

CI(β) (-0.003, 0.003) (0.00, 0.01) (-0.03, 0.00) (0.00, 0.00) (0.00, 0.02) (-0.007, 0.00)

Table 3: Posterior summaries of βl for Texas and Louisiana obtained from the mSSM
model.

4.6 Prediction

We next focus on the task of prediction. For this, we shall consider a rolling-window
prediction in the following sense. Suppose (yt, Xt)

t0
t=1 represent the t0 points of observations

(for any one state). We use this data to predict yt0+1 using the models SSM and mSSM.
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To predict y at t0 + 2, we use (yt, Xt)
t0+1
t=1 to train the model, so on and so forth. Both of

these models allow us to compute the posterior predictive distributions defined as

p(yt0+1 | (yt, Xt)
t0
t=1) =

∫
p(yt0+1 | αt0+1, θ)p(αt0+1, θ | (yt, Xt)

t0
t=1)dαt0+1dθ

=

∫
p(yt0+1 | αt0+1, θ)p(αt0+1 | αt0 , θ)p(αt0 , θ | (yt, Xt)

t0
t=1)dαt0+1dαt0dθ.

In other words, a sample from p(yt0+1 | (yt, Xt)
t0
t=1) can be drawn by first sampling αt0 , θ |

(yt, Xt)
t0
t=1, then αt0+1 | αt0 , θ and finally drawing yt0+1 | αt+1, θ. Samples of αt0 , θ |

(yt, Xt)
t0
t=1 are already available from the MCMC implementation, and the distribution of

αt0+1 and yt0+1 are available from the model (5).
A key distinction in this case from classical frequentist inference is that we obtain a

predictive distribution instead of a point forecast. In order to evaluate this predictive
distribution against point realizations, we will use scoring rules (Gneiting and Raftery,
2007). Specifically, we will use the Continuous Ranked Probability Score (CRPS). The
advantage of using this scoring rule is that it takes into account the calibration of the
entire predictive distribution against the observed value, instead of simply focusing on
some location of the predictive distribution, such as its mean or median. Suppose F (x) is
the cumulative predictive distribution obtained by some method, and let y be the observed
value. Then the CRPS is defined as

CRPS(F, y) =

∫
{F (x)− 1(x≥y)}2dx,

where 1(x≥y) = 1 if x ≥ y and 0 otherwise. Intuitively, 1(x≥y) is the cumulative distribution
function of a degenerate random variable taking the value y. This is compared with the
forecast distribution F (x). When a point forecast ŷ is available instead of a distribution,
the CRPS reduces to the absolute error. In our computation, since the mortgage rates
in the original scale are numbers between 0 and 1, we approximate the CRPS score by
numerical integration using a quadrature method:

CRPS(F, y) ≈
m∑
k=1

wk{F̂ (vk)− 1(vk≥y)}
2,

where (vk, wk)
m
k=1 represent the m quadrature points within the interval [0, 1], and F̂ is

the empirical predictive distribution function constructed from the posterior predictive
samples.

We focus on the state of Texas for which we have T = 192 observations and compare the
CRPS scores for SSM and mSSM. For the rolling-window, we consider t0 = 150, . . . , 191,
and computed the average CRPS score We obtain that the CRPS scores for SSM and
mSSM are 3.9×10−7 and 1.7×10−8, respectively. Thus, mSSM provides an improvement
of an order of magnitude over SSM in terms of CRPS. Naturally, for states which do not
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Figure 11: Rolling window predictions for Texas and Louisiana obtained from mSSM.
Here, large spikes around the years 2017 in Texas and Louisiana correspond to Hurricane
Harvey. Black solid lines depict the observed delinquency rate, red solid lines trace the pos-
terior mean of the predictive distribution, and gray shaded region shows the 95% empirical
credible interval of the predictive distribution.

encounter large natural hazard losses, CRPS scores of SSM are mSSM are almost exactly
equal.

In Figure 11, the rolling window predictions in the original scale are shown for Texas
and Louisiana for mSSM. Here, we set t0 = 50. We can see that the proposed model is
able to predict large spikes anticipated from huge loss inflicted by natural hazards. While
the absolute prediction is high compared to the observed delinquency rates, we believe
the model would still be useful for devising strategies by insurance companies to mitigate
future risk.

5 Conclusion

In this article, we study the relationship between natural hazard losses and mortgage
default risks. Our exploratory analysis on the Fannie Mae default data and SHELDUS
natural hazard loss data show empirical evidence of the impact of natural hazard losses
on default risks. We formulate a sliced SSM to formally model default risks with natural
hazard losses. The proposed model allows very large losses to impact differently on default
risks through a careful choice of coefficients. Results of our analysis on data from the
states of Texas and Louisiana show default rates can be positively effected by large natural
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hazard losses from the 3 and 4 months prior.
As for future work, we envision natural extension of this model to consider non-linear

effects of natural hazard loss data through nonparametric Bayesian priors for functions.
A separate line of research may potentially consider a hierarchical model for default data
from all the states, ensuring borrowing of information between the states. This modeling
approach has the benefit of informing inference on states who have not experienced large
losses through similar effects on states who have experienced these losses.

Acknowledgment

We gratefully acknowledge the generous financial support provided by the Society of Ac-
tuaries for this project through the Individual Grant.

References

Aktekin, T., R. Soyer, and F. Xu (2013). Assessment of mortgage default risk via bayesian
state space models. The Annals of Applied Statistics, 1450–1473.

Chukhrova, N. and A. Johannssen (2017). State space models and the Kalman-filter in
stochastic claims reserving: Forecasting, filtering and smoothing. Risks 5 (2), 30.

Coleman, A., N. Esho, I. Sellathurai, and N. Thavabalan (2005). Stress testing housing
loan portfolios: A regulatory case study. APRA Working Paper , 1–46.

De Jong, P. and B. Zehnwirth (1983). Claims reserving, state-space models and the kalman
filter. Journal of the Institute of Actuaries 110 (1), 157–181.

Doucet, A., N. De Freitas, N. J. Gordon, et al. (2001). Sequential Monte Carlo Methods in
Practice. Springer.

Durbin, J. and S. J. Koopman (2012). Time Series Analysis by State Space Methods.
Oxford University Press.

Elul, R., N. S. Souleles, S. Chomsisengphet, D. Glennon, and R. Hunt (2010). What
“triggers” mortgage default? American Economic Review 100 (2), 490–494.

Fitzpatrick, T. and C. Mues (2016). An empirical comparison of classification algorithms
for mortgage default prediction: evidence from a distressed mortgage market. European
Journal of Operational Research 249 (2), 427–439.

Foote, C. L., K. Gerardi, and P. S. Willen (2008). Negative equity and foreclosure: Theory
and evidence. Journal of Urban Economics 64 (2), 234–245.

23



Foster, C. and R. Van Order (1984). An option-based model of mortgage default. Housing
Finance Review 3, 351–372.

Fung, M. C., G. W. Peters, and P. V. Shevchenko (2017). A unified approach to mortality
modelling using state-space framework: Characterisation, identification, estimation and
forecasting. Annals of Actuarial Science 11 (2), 343–389.

George, E. I. and R. E. McCulloch (1993). Variable selection via Gibbs sampling. Journal
of the American Statistical Association 88 (423), 881–889.

Gneiting, T. and A. E. Raftery (2007). Strictly proper scoring rules, prediction, and
estimation. Journal of the American Statistical Association 102 (477), 359–378.

Hobert, J. P. (2011). The data augmentation algorithm: Theory and methodology. Hand-
book of Markov Chain Monte Carlo, 253–293.

Kousky, C., M. Palim, and Y. Pan (2020). Flood damage and mortgage credit risk: A case
study of hurricane harvey. Journal of Housing Research 29 (sup1), S86–S120.

Leece, D. (2008). Economics of The Mortgage Market: Perspectives on Household Decision
Making. Wiley.

Li, H. and J. Su (2024). Mitigating wildfire losses via insurance-linked securities: Modeling
and risk management perspectives. Journal of Risk and Insurance 91 (2), 383–414.
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